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Multiple Bonds and Excited States from the Hartree—Fock—Heitler —London Method
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The recently proposed Hartre€ock—Heitler—London, HF—HL, method (Corongiu, GJ. Phys. ChemA

2006 110, 11584) previously tested for single bond molecules is validated by potential energy computations
for open and closed shells, single and multiple bonds, in ground and excited states of homopolar diatomic
molecules of the first and second period. The simple-HIE function, including the configurations for 2s/2p

near degeneracy and avoiding state crossing, yields correct dissociation products, qualitatively correct binding,
and accounts for non-dynamical correlation. Addition of ionic structures improves the ab initibl Hfeinction

and yields about 95% of the experimental binding energies on average. Computed excitation energies are
also in agreement with laboratory values as verified for’ifig and 32; excited states of the nolecule.
Computation of the remaining dynamical correlation using a semiempirical functional yields binding energies
with an average deviation of 1.5 kcal/mol from laboratory values, and total energies with an average deviation
of 0.7 kcal/mol from exact nonrelativistic dissociation energies.

1. Introduction a simple wave function, obtain realistic binding energies from
dissociation, to equilibrium separation, to the repulsive region.
This demonstrates the applicability of the HAL method to
molecules with open and closed shells, single and multiple
bonds, in ground and excited states.

The variational technique provides one of the main methods
used in quantum chemical computations of molecular binding.
Since the beginning of theoretical chemistry, molecular orbitals
(MO) and atomic orbitals (AO) one-electron functions have been . S .
recognized? as a fundamental tool. They provide the basic , | Start by describing the physical ideas that form the basis
starting point for the linear combination of atomic orbitafs for the HF-HL model. Correct dissociation products are

(LCAO) and the HeitlerLondorf (HL) methods, and many obtained by constructing th&# - wave function from a
subsequent extensions, including Hartré@ck7‘1°' (HF); full variational linear combination of HF and HL functions. If the

configuration interactiol-12 (FCI); multi-configuration self- molecule ”Z‘gselr analysis contains atoms that are nearly
consistent-fieltf~1° (MC-SCF); multi-reference configuration degeneraté at d|S_SOC|at|on andfor if the molecular state
interactiod® (MRCI); natural orbitald'24 (NO); alternant resu_lts frc_)m an avoided state crossinghen a few HF
orbitals?5 the propagator techniqué®?’ geminals® and a configurations and a few HL structures are addeWg_p_ to

number of valence boRe3® (VB) approaches. Alternative cre.ate a wave function, called the ‘.‘simple HFIL. function”,
methods do exist, such as quantum Monte CHrimd semiem- which accounts .for the non-dyn§m|cal corrglatlon enéﬁgy.
pirical approaches, which include the popular density functional ~_The computation of the dynamical correlation energy is dealt
technique®-4° (DFT). Perturbation methods provide a parallel With in post-HF-HL steps. By adding a few ionic structures to
and efficient complement to the variational method, but they the simpleWye—y function, the computed molecular binding
are not discussed here, as they are not directly related to®nergy is improved to nearly the experimental value. This
variational techniques considered in this work. approach is based on a §uggestlon originally in Majorana’§ paper
The driving force for the development of many of these ©N the H molecule>? T_h|s _vvork also demonstrates that ionic
methods was to create quantum chemical algorithms that areStructures are as effective in HHL computations on homopo-
computationally affordable and easy to interpret, yet provide [ar molecules, as they are in polar molecule computations. The
realistic representations of bond formation and breaking. This Simple HF-HL function with the addition of ionic structures
led to the introduction of electronic correlation energy correc- 1S denoted “HF-HL-ionic”, W -i.
tions2! which were neglected in the two traditional models, the ~ The remaining dynamical correlation correction can then be
HE7-10 and HLS® reduced to the sum of the correlation energies of the atoms
The Hartree-Fock—Heitler—London (HF-HL) approach is ~ composing the molecule. This is a nearly constant energy
a recent quantum chemical mo#e® based on well-defined ~ contribution at different internuclear separations, which can
computational stepd5 that unify and improve the HF and be approximated by a semiempirical density functional, the “soft
the HL description. The approach combines either ab initio HF Coulomb hole’33-57 This functional was recently recalibratéd
and HL multi-configuration techniquédor short ab inito HF ~ Using more accurate estimates of atomic correlation
and HL expansions with semiempirical density functional energies?
approximationg445 In section 2, | provide a summary of the method, updating
In this work, | present HFHL computations on diatomic ~ previous version4: 4% In section 3, | list and discuss the HF
homopolar molecules of the first and second period and, with configurations and HL structures used in the computations. In
section 4, ab initio computations with and without ionic
* Corresponding author. E-mail: corongiu@unisubria.it. structures are discussed forlBe, By, Co, No, O, and . In
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section 5, | report on the computation of the atomic component
of the dynamical correlation correction.

2. The HF—HL Method
The HF—HL formal methodolog§?4® summarized and up-

dated below includes experience gained in this work and recent™®call that thed;

applications'*#%> For an n electron molecule, the HFHL
method variationally combines HF and HL wave functidifsy
and Wy :

WY . =det@,, ..., D, ..

D) (1a)

Wy = deEt(@lka s Pier 01 Prok) (2a)
Above, @; defines thath HF molecular orbital angy the jth
atomic orbital of thekth determinant in the HL function, a VB
structure; thed; forms an orthogonal set, but not tig.

Note that the?Wy_ is constructed to satisfy the correct spin
coupling constraint& with dissociation products into atoms in
the lowest state of their ground-state configuration, subjected
to satisfying WignerWitmer rules®? When atoms in the

molecule are in a state with near degeneracy at dissociation (e.g.

2s/2p for Be, B, and C atoms) and/or when there is an avoided
state crossing,then Wyr and Wy, in eqs 1la and 2a can be
replaced with MC-HF and/or MC-HL expansionsy as¥Pe-

(s) and ¥ bWy (), respectively, designatedyr and Wy :

W= > W9 = ) aldetdy, .., @, .., @,

W =Y bW O = Y b ddet@uo oo, @i s Prud]
(2b)

(1b)

whereas andby are the coefficients of the MC expansions, and
s andt characterize the length of the expansiosmandt need
not be equal (see ref 43 for details).

The HF—HL wave functionWe_p is obtained by variational
optimization of the linear expansion

Wir L (St) = CueWhe + oy W = zsaslpHF(S) +
ztbtlpHL(t) 3)

The number of termss(andt) of the MC—HF and MC-HL
expansions differs from molecule to molecule. For the MC
HF component, in general, | use only one term, the HF ground-
state configuration function. One reason for this choice is that
the MC—HF configurations when added to M&1L expansions
can easily form a redundant set (the ¢bmputation reported

in detail in ref 43 provides a good example). Although near
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whereH and S are the interaction super-matrices containing
the Hamiltonian and the overlap matrix elements, respectively.
The ®; orbitals of theW 4= component are a linear combination

of a basis set of Gaussian functions, and the same basis set is
also used to expand the orbitaj of the Wy component. |
orbitals form an orthogonal set, whereas the
@ik orbitals can be non-orthogonal. In the latter case, following

a general method proposed byvain® and later reinterpreted

by Slater®® the interaction between two determinandg,and

dy, is given by:

[dlyH|dy = Zijhijgi’j) + Z‘<kvi<' [0j |KIC— O |kjop S

where the indices andk refer to the occupied orbitals @k,
andj andl to those ofd; ') andSki!) are the first- and second-
order cofactors of the overlap matr§ constructed with the
occupied orbitals ofl, andd,. The biorthogonal transformation

is an effective way to compute the cofactétshut matrix
element evaluation is computationally demanding. Therefore,
a number of related simplifying techniques have been pro-
posed®85For example, Leasure et ®combined determinant
properties and the biorthogonal transformation, to produce an
efficient evaluation of all of the matrix elements, thus reducing
the complexity of the original Lwdin formulation.

In my approach, | first define the chosen HF configurations
and HL structures expanded with a unique basis set of N
functions. Next, | apply an integral transformation from the basis
set integral list to molecular and atomic orbitals and relative
cross terms between molecular and atomic functions. With
algorithms used in VB literatur®,the matrix element&,|H|d,0
are then computed for the interactions of HF with HF functions,
of HL with HL structures, and of HF with HL structures. | then
solve by diagonalizationH — SE)C = 0. To optimize the
orbital expansion coefficients, | currently use a numerical
algorithm based on the NewtefRaphson procedure (the related
computer code is still in developmet).

Equation 3 represents the first of three HHAL successive
steps, and it is referred to as the “simple HHAL wave
function”. Solutions of eq 3 produce the correct dissociation
products and account for avoided curve crossing and 2s/2p near
degeneracy. This means the non-dynamical compoBEg(mipn-
dyn), of the correlation energ\., is well represented. If |
denote the dynamical component&f asE¢(dyn), then:

4

The standard definitidh of the correlation energy, related
to HF functions, is extendé#ito include HL and HFHL wave
functions: Ec = E(n.r.) — Emodes WhereE(n.r.) is the exact
nonrelativistic energy, anBnqqe refers to the energy computed

E. = E.(non-dyn)+ E (dyn)

degenerate configurations can be selected by simple inspectiorvia a model, like HF, HL, HFHL, etc.

of the HL terms, selection of MEHF terms is less obvious, as

For historical reasor®;58the correlation energy correction

the distinction between non-dynamical and dynamical correla- is defined with reference to HF solutions, although the underlin-
tion can be difficult; this is discussed below. State crossing ing expectation is to define the error implicit in any model
configurations are an exception to this situation. solution relative to the exact solution of the Satirger
The HF function in eq 3 is either the traditional HF solution equation. Again, for historical reasons, the models are de facto
or one where the orbitals are reoptimized in the field of the subdivided into those that either consider or neglect the
MC—HL component. The number of the ML terms in the relativistic corrections. In this work, | needed to extend the
HF—HL approach is discussed in section 3, where | tabulate Léwdin?! definition, because | consider both the HF and the

the dissociation products generating the different-M{L terms
(structures).

In eq 3, theas and by coefficients are obtained variationally
by solving the equation

(H-SBC=0

HL models. The relativistic correction can be considered as a
small perturbation for the molecular quantities considered in
this work.

Correlation correction is often partitioned by applying criteria
that evaluate interaction type (short or long range) and number
of electrons (two or many). Here, | apply citeria introduced in
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TABLE 1: Laboratory Molecular Binding Energy (kcal/mol), Ep, Laboratory Equilibrium Distance (bohr), Re, Total
Nonrelativistic Energy (hartree) at Equilibrium, E+(Re), and at Dissociation,E+(R.), Atomic Ground-State Energies at the
Hartree—Fock Limit, Epg[Limit], and Computed with the Basis Sets of This Work, Exe[This Work]

molecule Ep? R2 —Er[R{] —E7[Ra]" —Ene[limit] —Enethis work]
H, [1231 109.48 1.40 1.1744757 1.000000 H$] 0.500000 0.499999
He, [123’] 0.0Z 5.6Z 5.807483 5.807448 Hég] 2.861680 2.861679
Li, [125] 24.67 5.0510 14.99543 14.95612 B8] 7.432727 7.432721
Be, [IZQ] 2.40 4.63 29.33860 29.33477 Bég] 14.573023 14.573016
B2 [°%,] 68.49 3.0047 49.41695 49.30780 BA] 24.529061 24.529036
C [12;] 147.8% 2.3480 75.9256 75.6900 CH] 37.688619 37.688616
N, [123] 228.4 2.0743 109.5426 109.1786 1$] 54.400934 54.400924
02 [%3,] 120.6 2.2819 150.3270 150.1348 ®]74.809398 74.809384
F [12;] 39.0 2.6682 199.5305 199.4683 3P199.409349 99.409343
Ne, [123] 0.08 5.84 257.87673 257.8766 Nég] 128.547098 128.547052

aReference 842 Reference 85¢ Reference 869 Reference 87¢ Reference 88\ Reference 89 Reference 907 Reference 59.

the early quantum chemistry literature: dynamical and non- to quantitatively establish a measure of the near degeneracy of
dynamical correlatiod® 48 Bethe-Goldstone electron pair  two configurations, by comparing the computed energy of the
correlation®® and atomic and molecular correlation components two configurations with their interaction. This computational
decompositiorf® Sinanoglu’s non-dynamical correlation in- approach allows one to consider as near degenerate eventual
cludes the correlation energy correction, which can be obtainedconfigurations excluded by the simphe— | near degeneracy
from multi-configuration energy computations limited to near criterion.

degenerate configurations, following Hartree et3dbr Be['S] In this work, | consider the non-dynamical correlation for
and Veillard et aP! for Be['S], B[?P], and C§P] neutral atoms  HF—HL functions, which dissociate correctly, unlike the HF
and the corresponding iso-electronic series of ions. function. | restrict the identification of near degenerate con-

In configuration expansions, some interactions are grouped figurations simply ton — | near degenerate configurations.

separately. For example, on the basis of the energy differenceFinally, | add the eventual state crossing configurations, a clear
from the reference configuration energy, | differentiate the set near degeneracy instance. My goal is to provide a simple but
of nearly degenerate interactidAs! from covalent or ionic reasonable operational definition, while remaining open to the
higher excitationg? In general, the partitioning stresses partial application of the above-reported “more general definitioh”.
aspects of the correlation effects, and therefore can be incom-I believe it is outside the scope of this work to compare the
plete and approximated, underlining that the correlation cor- quality and validity of different definitions.
rection is a combination of different effects, often overlapping  In the HFHL model, the computation of dynamical cor-
one another. relation is dealt with in the “post-HFHL” computations, the

In this work, | follow a pragmatic approach, which is neither second and third HFHL steps?*?>4% In principle, | would like
the most general nor unique, but is based on the simpleto correlate ab initio the valence electrons first (second-HF

application of established partitioning definitions. HL step) and then target the inner shell electrons (third-HF
It has been known since the work by Linderberg and Shull HL step). This can be accomplished with MEF3-1° and
that the atomic near degeneracy can be related t@-#igect MC—HL expansions with large basis sets, but this approach is

and to the hydrogenic energy expression, which depends on therestricted to molecules with relatively few electrons and the
n, but not on thd quantum numbersi(— | near degeneracy).  computational costs are high (as shown in ref 43 f@l[!{;’],
One consequence is the atomic 2s/2p near degeneracy and theleH ['3*], LiH [13*], and BeH [y *]). Instead, | exploit
Z dependency of the ionic iso-electronic series for'BE[B[2P], correlation energy decompositions, like the one in eq 4 and
C[®P, 1D, 1S], and NPP] atoms. The 3s-3p-3d near degeneracy, others discussed below, to create specific components of the
and so on, are similar. By simply inspecting a configuration, | correlation energy to be computed either ab initio or by
can decide the near degeneracy relative to a reference configsemiempirical density functiona$g:58.70.78-83
uration (the ground-state configuration in this work). The atomic  To account folEc(dyn), | make use of the decomposition into
near degeneracy affects the molecular energy computationsthe molecular extra correlation enertfyy;, and the sum of the
because the orbital molecular correlation diagrams by Herzberg correlation energy of the separated atofng. Recalling344
and Mullike* are built either directly with AO or with  thaty = y(dyn) + (non-dyn) andy sa = Y a(dyn) + 3 aca
symmetry adapted linear combinations of AOs, the MO. (non-dyn), | write:

Alternative definitions of non-dynamical correlation have
been proposed. For example, to account for the non-dynamical Ee = 7(dyn) + 3 .(dyn) + n(non-dyn)+ zaea(non-d%/n;
correlation in density functional formalisms in a B8] study, (5a
the local scaling transformation of density functional theory was _
used as criterion to partition dynamical and non-dynamical Ec(dyn)=n(dyn) + zaea(dyn) (5b)
correlation corrections. This led to the conclusion that the non- Because the non-dynamical correlation is included via the simple
dynamical correlation component is 1 order of magnitude HF—HL computation, | solve eq 5ky(dyn) is computed ab

smaller than previously assum&lStill another definition initio and Y s4(dyn) and a small residual fraction af(dyn)
redefines the 2s/2p angular correlation as correlation of dynami- (discussed below in eq 6b) are approximated with density
cal type’® functionals.

A more general definition, unrelated to density functionals =~ Complementing egs 4 drb | recall that, following Nesbég,
theory, has been recently advanééghich provides criterion the correlation correction can be partitioned into the Bethe
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Goldstone decomposition, into pair correlation energies, intra- TABLE 2: Atomic and lonic States for the HF —HL

pair wji and inter-pairse;. Thus, for am electron molecule, |

Functions at Dissociation

H. [13 4] atomic

(6a)  HISI9

write:

E.= Ziwii + Zizjwij
where in the first summation= 1, ...,n/2, and in the second,
i = j. Note that, in generalyj < w; and each paiw can be I ]
decomposed into dynamical and non-dynamical components (see-'2 [_Zg] atomic
refs 43 and 44 for details). Therefore, | write: [1] Li[2S](1s25Y)

Be; [*3,] atomic
E.= Ziwii(dyn)+ ZiZJWij(dyn)+ Ziwii(non'dyn)+ [1] Be ['S](29)

[2] Be [*P](2s2p")

[3] Be ['S](292p?)
From eqgs 4 and 6, | see that the computation(aiyn) includes [4] Be ['D](2<°2p?)
not only the intra-pair energiggwii(dyn) for binding electrons [5] Be [P|(292)
but also the elusive and small inter-pair energiggdyn) - )
between binding and nonbinding electrons; the latter is the small B2 ["2] atomic
residual fraction ofy(dyn), mentioned in the discussion of eq

He, [*3 ;] atomic
[1] He [*S](19)

[1] B [*P](2$2p")
5b. [2] B [*P](292p)

Finally, the molecular binding energyg, can also be [3] B [?D](2s°2p°)
partitioned®44 into the computed binding relative to a given [4] B [2P](2$2p?)
quantum mechanical moddt,(model), and itSymodei [5] B [2D](2s12)

E, = Eo(model)+ 740 (7)  Cel'Sglatomic
[1] C [*P](282p)
In HF—HL computationsimogelis reduced tay(dyn)nogei below [2] C [*S](282)
I use the shorter notatiom(dyn) in place ofi(dyn)modet [3] C [!D](2s2P))
From previous computatioffson the hydrides, | learned that [4] C [*P](282p%)
a large fraction (_)fn(_dyn) can be 4rse‘:govered _by addin_gllm_L [5] C [*P](2821f)
of eq 3 a few HL ionic structure¥;*>52constrained to dissociate [6] C [S](2$2p")

into the lowest ionic states. In this work, | confirm the large
energy gain obtained with ionic structures, but remove the [r1c
constraint on the selection of the ionic structures. These are
formed with products of ions in their lowest configuration, not
necessarily in the lowest ionic state, and are added to the N, [£5 ] atomic
covalent HL functions of eq 3. In addition, I include, when 1] N[#5)2¢2p)
needed, single, double, and triple ions; the ionic configurations [2] N [2D](2529)
| have selected are discussed in section 3.

The partitioning given in eqs47 makes it feasible to isolate
those relatively few but important HF-type functions and HL-
type structures, which account fg¢dyn) when added to eq 3. O2[%3,] atomic
This strategy provides realistic binding energies, as previously [1] O [*P](282p%)
reported® for the hydrides and for the van der Waals molecule [2] O [*D](2s22p")
HeH. [3] O ['s](2$2p)

In the HF—HL computations, | consider the use of density F, ['5 1] atomic
functionals simply as algorithms to scale the total energy and []F [gp](l§2§2p5)
to secure atomic correlation, nearly “an extrapolation proce-

Nez [13 ;] atomic

['Dl(2s2p")

cationic
[11HT (1)

cationic

cationic

[1]LiT ['S](19)
cationic

[1] Be" [*S](29)
[2] Be" [*P](2$2p")

cationic

(1] B* [*S](29)
(2] B* [*P](2$2p?)
(3] B* [*P](2s52p")
[4] B ['S](2$2p?)

cationic

[1] C*2['S](2s2p)
[2] C*2['S](292p)
[3] C*?['D](252p)
[4] C*2 [*P](292p)
[5] C**[*P](252p")
[6] C* [*P](252p)

[7]C* [*S](252p)

[8] C* [*D](2s'2p)

cationic

[1] N* [*P](282p)
[2] N* ['D](2s2p?)
[3] N* ['S](282p7)
[4] N*2[2P](282p")
[B] N*3[S](282p")
cationic

[1] OF [*P](282p%)
[2] 02 [3P](282p?)

cationic

anionic
[1]H™['S](19)
[21H™ [*S](2p)

anionic

anionic

[1] Li~ ['S](1229)

anionic

[1] Be™ [?S](2g3s")
[2] Be™ [?S](283<9)
[3] Be™ [*P](252p")
[4] Be™ [*S](252p)
[5] Be™ [*P](292p?)
anionic

[1] B~ [*P](282p)

[2] B~ [*P](2s2p?)

[3] B~ ['S](2s2p?)

[4] B~ ['D](2s'2p”)

anionic

[1] C2['s](2€2p%)
[2] C2['D](2s%2p")
[3] C 2 [*P](2$2p%)
[4] C 2 [*P](252p°)
[5] C* [?P](2€2p°)
[6] C* [?D](25%2p?)
[71C*[?s](252p%)
[8] C* [?D](2s'2p")
[9] C* [?P](252p")
[10] C1[?P](292p°)
anionic

[1] N~ [*P](282p)
[2] N~ ['D](2s?2p")
[3] N~ ['S](282p")
[4] N2 [*P](282p")
[B] N3 [S](282p°)
anionic

[1] O~ [?P](22p%)
[2] O~ 2['S](282p")

anionic

[1] F+ [!D](12282p") [1] F~ [1S](1$22pF)

cationic

anionic

dure”.
From the early days of quantum chemistpy57.68.70.76:83 [1] Ne ['S](125°2pP)

semiempirical functionals have been known to yield energies gqoy jimit energy for the atoms. These basis sets are augmented
of different accuracy, depending partly on the functional form, it polarization functions to ensure molecular energies close

but mainly on their parametrization. Today, density functional 14 the Hartree-Fock limit and accurate CASSCF expansiéhs.
use Is usually qssomated W'th DFT compytaﬂbf}%‘?ﬂ‘.o FOI', In Table 1, for the homopolar diatomic molecules, | report
lowing my previous computations on hydrides, in this Article, 1554101y binding energy (kcalimoBs, laboratory equilibrium
| use the Coulomb hole, g:srl,sguncnqnal, specifically “the soft istance "(bohr)Re, total nonrelativistic energy (hartree) at
Coulomb hole” algorithn¥?>*¢recalibrated for the HFHL equilibrium, Ex(Ry), at dissociationEr(R.), Hartree-Fock limit
energies and fPr near degenerate atomic enefgigse HF— for the separated atonis,([limit], and the HF energy computed
HL wave function, Wy, corrected with the soft Coulomb it the basis set of this workg,[this work]. The nonrela-
hole functional is designated as the HRL-Ch function,  4yistic energieEr(R.,) are obtained from the carefully estimated
Whir-HL—cn. atomic energies by Chakravorty et #lthe total nonrelativistic
— . energiesEr(R:) are obtained by addingy, to Er(R.).
3. HF and HL Characterization of the HF—HL Functions In Table 2, | report the atomic state functions (neutral and
The computations performed for the homopolar molecules ionic) used to build the dissociation products of the-HHL
are obtained with basis sét$arge enough to reach the Hartree  functions (constrained by the Wignewitmer rules). For Bg
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TABLE 3: Computed (at the Experimental Geometries) Ab Initio Binding Energy (kcal/mol), Ey, Total Energy (hartree), E,
and Correlation Energy (hartree), E., for HF, HL, HF —HL(S,T), and HF—HL-i Models (Experimental Binding Energies
(kcal/mol), Ep(exp), Are Also Reported)

binding Lip Be, B, C N> O, F
En(HF) 3.83 —7.54 20.53 18.27 120.15 30.18 —29.24
En(HL) 8.68 —19.23 —15.59 —-0.92 121.96 1.51 —17.59
Ep(HF—HL)(1,1) 8.69 —-7.53 23.05 41.90 159.96 62.26 11.46
En(HF*—HL)(1,1) 8.80 —7.48 25.58 53.68 164.19 65.58 15.43
(ST (1,1) (1,5) (1,5) (1,7) (1,2) (1.3) (1,1)
En(HF—HL)(ST) 21.84 —-9.49 55.01 127.10 175.04 76.56 11.46
Ep(HF*—HL)(ST) 21.87 —8.56 56.07 134.38 178.96 82.11 15.43
Ep(HF—HL-i) 25.48 0.50 62.95 138.40 213.16 110.12 35.70
Ep(HF*—HL-i) 25.70 0.52 63.77 143.86 220.03 115.02 38.71
Eu(exp) 24.67 2.40 68.49 147.85 228.4 120.6 39.0
total
E(HF—HL)R. 14.86544 29.23347 49.12360 75.41206 108.80184 149.61924 198.81916
E(HF—HL)Re 14.87929 29.21834 49.21126 75.61460 109.05677 149.71845 198. 83742
E(HF—HL-) Re 14.90604 29.23427 49.22392 75.63262 109.14154 149.79473 198.87700
correlation
E(HF) 0.12389 0.20458 0.32615 0.51925 0.54927 0.66014 0.75841
E(HL)(T) 0.11616 0.12101 0.20569 0.31120 0.54640 0.70536 0.73942
E.(HF—HL)(ST) 0.11614 0.12026 0.20169 0.31100 0.48584 0.60855 0.69308
E«(HF—HL-i) 0.08939 0.10433 0.19303 0.29298 0.40106 0.53227 0.65350

aThis value is obtained with a MEHL containing four structure$.The value reported corresponds to the (1,1) computation. The values for the
(1,2) case areE(HF—HL)(R:) = —109.08077 hartree, arigh(HL)(2) = 163.58 kcal/mol¢ The value reported corresponds to the (1,1) computation.
The values for the (1,3) case arEj(HF—HL)(R.) = —149.74078 hartree, arfg,(HL)(3) = 54.53 kcal/mol.

B., and G to the neutral atomic states of the?22s2p’ 4. Ab Initio Computation of Binding Energy for Ground
configurations, | add states of the near degenerate configurationsand Excited States

122p2 and 132s'2p™™1 (and equivalently for the ionic
configurations). Note the limited number of states used to create
the HL structures. From the table, it is easy to see how the
number of states might be increased, but | purposely kept it

small tp show the impact of.a few well-chosen states mainly notation HFHL, if reoptimized in the field of the HL structures
belonging to the lowest configuration. For the HF component | use the notation HE=HL. Therefore. | shall discuss HE

of the HF—HL function, | have restricted my choice to the HL(L,1), HF*—HL(L,1), HF—HL(ST), HF*—HL(ST), HF—HL-
ground-state _function of the ground-state configuration, tabulated i an(i H,F*—HL-i coénp’utations, sur;wmarized in Tallble 3, where
for example in Herzberg's classical Vo'”'ﬁ?' the experimental binding energies have been added. In Figure
To demonstrate the use of Table 2, | consider thenOlecule. 1 | report the potential binding energy curves computed with
The HFHL(1,1) function is simply the combination of the HF  the HF, HL, and simple HFHL wave functions (eq 3), without
ground-state function and of the HL function generated by inclusion of 2s/2p near degeneracy effects. For computations
“atomic” state labeled [1] in the first column of the tabfe,- with interactions between structures generated from atomic
°P. The notation HFHL(ST), which relates to HF configura-  ground states and from atomic excited states (of the same atomic
tions and HL structures, should not be confused with the one ground-state configuration) like inAand @, see Table 2 first
of eq 3, where _the i_ndices andt refer to t_he number of  column case [1] and [2] for Nand [1], [2], and [3] for Q, the
component functions in the HAHL wave function. The (HF two lowest solutions are indicated with the letters a (lower state)
HL)(1,3) function is obtained by adding to (HfHL)(1,1) the and b (higher state). In the figure, | use the notationHt
HL covalent structures generated from the combination of (ST) except for the case wheS= T = 1, to avoid a redundant
“atomic” states labeled [1] and [2] in the table and from the notation. Each potential energy curve is computed atZ8D

In this section, | report on the ab initio HHHL computations,
with and without ionic structures (limited to those constructed
with the data in Table 2). If in HFHL computations the orbitals
of the HF component are frozen to the HF solution, | use the

gor‘r;bin?tion of?:‘atolmic" states labeled [1] and [3], thiR- internuclear separations, and the reported dissociation energy
P,*P—ID, and*P—1S. The (HF-HL-i) function is obtained  values are computed at internuclear separation of 40 bohr.
by adding ionic structures to (HFHL)(1,3): these are a The binding energies for +are those reported in ref 45, with

combination of the “cationic” state labeled [1] with the “anionic” Ep(HF—HL)(1,1) = 83.83 kcal/mol andEy(HF—HL-i)(1,2) =

state labeled [1] and also of the “cationic” state labeled [2] with 100.24 kcal/mol. For Wand Lk, the binding energy from the

the “anionic” state labeled [2], §*P]-O~[?P], O*][3P]-O % Wy, function is essentially equal to that fro#—., and both

[*S]; thus, the (HF-HL)(1,3) function is composed by a total  are superior to thélye binding energy. For Beand B, the

of 4 HL structures and the (HFHL-i) by a total of 8 structures. binding energy improves fron¥. (which yields repulsive

It is evident that the number of covalent and/or ionic structures potential energy curves) # e to Whe_ . t0 Whpe—pL. From

can be easily increased to yield computed binding energies evergigure 1, | see that the HFHL approximation (even without

closer to the eXperimentaI value than those reported in this work. inclusion of 23/2p near degeneracy) is def|n|te|y Superior to the
However, the so-called “ionic structures” raise the physical HF and HL approximations.

interpretation problem pointed out in 1931 by Major&ha: For G, the HL approximation is rather poor at equilibrium;

charge transfer via ionic structures has no physical interpretationit improves in the HF model and notably so in HAL and

in homopolar molecules. The ionic structures are simply an HF*—HL computations.

efficient way to introduce “ir-out” correlation. Majorana used For Ny, the HF and HL approximations yield essentially the

the designation “pseudo-polar”; | shall continue with the use same binding energy value, which improves significantly with

of the term “ionic structure”, following the VB tradition. the use of the HFHL and HF*—HL approximations, and even
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Figure 1. HF, HL, and HFHL first step potential energy curves, without near degeneracy, for the ground stateldp,HBe,, By, Cy, N, O,
F», and state interactions for,Nind Q.

more when the interaction with a second HL structure is solutions, designed a, b, and c (the latter is not reported in the
included (see Table 2) leading to the curve-HfL(1,2)a. The
binding computed with HF=HL-i reaches the value of 220.03

kcal/mol.

The same situation holds for,(see Figure 1), where the
HF—HL(1,3) function results from the linear combination of
OCP)—O(P), OP)-O('D), and OFP)—O(1S), leading to three

figure because it is too high in energy). The HL(1) potential
energy presents a small energy bump before dissociation, which
is notably reduced in the lower solution, curve labeled a. The
HF*—HL-i binding energy is 115.02 kcal/mol.

For the K molecule, the HF binding energy, the well-
publicized Achilles’ heel of the HF method, is strongly repulsive
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generacy, is 41.90, 83.72, and 100.61 kcal/mol, respectively.
2913 This can be compared to the HF values of 18.27, 72.94, and
_29.15 E 87.34 kcal/mol and to the experimental vaRfé of 147.85,
: 143.51, and 126.91 kcal/mol. The HFL total energies are
2947 ¢ —75.44406,—75.51065, and-75.53767 hartree for the three
states?z;, *[1y, and3} , respectively. Note the incorrect trend
-29.19 ¢ in the excitation energies. Inclusion of near degeneracy improves
the binding energies to 127.10, 124.06, and 107.30 kcal/mol
-9 3 with total energies of-75.61460,—75.60967, and-75.58305
2023 E hartree for the three staté§, 3, and 3y, respectively.
3 Ribor) 3 Note that |_ncI_US|on of near degeneracy leads to a correct order
2025 Eriii i b b T of the excitation energies, 0.13 and 0.86 eV for thk, and
30 30 70 20 3y 4 respectively; the 0.13 eV value improves previSus
T V)RR R MC—HF results. In Figure 3, left inset, | display the three states
4004 £ without and with inclusion of near degeneracy. Recalling the
E importance of near degeneracy in the CH stfftgnd consider-
E ing the data from Figure 3, | conclude that carbon chemistry is
4909 bg notably influenced by near degeneracy.
E Table 3 reports the binding energy (in kcal/mol) obtained
-49.14 FOI0 from the HF, HL, HF-HL(1,1), HF—HL(ST), and HFHL-i
computations, indicated ds,(HF), Ep(HL), Ex(HF—HL)(1,1),
4919 E Ep(HF—HL)(ST), and Ex(HF—HL-i), respectively, andEy-
3 E (HF*—HL)(1,1), Eo(HF*—HL)(ST), and Ep(HF*—HL-i). In
R(bohr) Table 3, | also report the total energy from HAL at
-49.24 e equilibrium, E(HF—HL)(Re), and at dissociatior,(HF—HL)-
(Rs), and the total energy at equilibrium for HHL-,
7s20 || F TR designatedE((HF—HL-i)(Re). The improvement due to the
E CcC-C E inclusion of the ionic structures is large as shown from the values
7e34E E of Ex(HF—HL-i) and Ep(HF*—HL-i) reported in the table. The
75390 £ E computed binding energy results confirm the conclusion from
Fg E my hydride study*® ab initio HF-HL computations with the
Ehaadi3° —— HF E addition of ionic structures yield realistic binding values from
_76.49 _uE.T — HLHF-HL _ wave functions with short expansions. Now | can extend that
E ] conclusion from single to multiple bond molecules, from ground
7554 £ E to excited states. In the HFHL-i computations for L4, the ionic
7559 3 structure includes the negative iorr ({1 2<%, near degenerate
E R(bohr) with Li~ (1s2p?); thus, because the basis set includes 2p
~75.64 e functions, inEy,(HF—HL-i) there is some near degeneracy gain,
Figure 2. HF(L), HL, and HF-HL with near degeneracy: potential Which accounts for the 0.82 kcal/mol, seemingly overestimating
energy curves for the ground state of,BB,, and G. the experimental value near equilibrium, but not at dissociation,
where the ionic structure does not contribute.
both in the HF and in the HL models. On the contrary, the-HF In a recent computatio,the ground state of the Mnolecule

HL method vyields an attraction, 11.46 kcal/mol, without s carefully investigated with a variety of VB methods and with
reoptimization of the HF orbitals in the field of the HL structure, different quality basis sets. The best binding energy, obtained
and 15.43 kcal/mol after reoptimization. | recall that two with the VBCISD method and the cc-pVTZ basis set, amounts
determinant MG-HF computations yield binding, 12.45 kcal/  to 110.0 kcal/mol at the internuclear distance of 2.336 bohr,
mol by Das and Waft and 14.99 kcal/mol by Lie and  whereas a VBSCF computation with 105 structures yields a
Clementi?? binding of 77.71 kcal/mol, to be compared with the experimental
The HF-HL method is clearly an improvement over the value of 120.6 kcal/mol at 2.2819 bohr (see Table 1). Total
HF and HL methods, and it provides qualitative agreement energies are not report8From Table 3, | see that only one
with experimental binding. The assumption that the HF com- HF function and one HL covalent structure, the simple-HF
ponent always prevails at relatively short distances, whereasHL computation, yields a binding energy of 62.26 and 65.88
the HL always at large distances, is brought into question kcal/mol with the (HF-HL)(1,1) and the (HF*HL)(1,1),
by the data in ref 42, which shows the computed coefficients respectively. The (HFHL)(1,3) with 4 HL structures (see Table
a and b of eq 3. The implication is that two methods co- 2) yields 76.56 kcal/mol, whereas the value is 82.40 kcal/mol
exist for much of the binding region and complement each with the (HF*—HL)(1,3). Finally, | obtain 110.12 and 115.02

other. ' kcal/mol with the HFHL-i and the HF*~HL —i, respectively.
The effect of near degeneracy for BeBz, and G is This comparison indicates that the new -HAL method is

substantial, shown by the potential energy curves of Figure 2. competitive with modern VB computatiogs%4

For G, | have in addition considered tiEl, and®y ; excited The addition of ionic structures inyfrings to a computed

states; experimentalff;®®the lowest state is thg, followed  pinding energy of 35.70 kcal/mol for HFHL-i and to 38.71

by the3IT, with an excitation energy of 0.1 eV and by the, kcal/mol for HF*—HL-i, close to the experimental value; note

with an excitation energy of 0.96 eV. The HHL binding of that this value takes into account the stabilization energy at

the 12;, 3[1,, and 32; states, without inclusion of near de- dissociation, 2.35 kcal/mol, due to the split of the 2p electrons
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Figure 3. Potential energy for the three lowest states pfl@ft: Computations from HFHL without and with near degeneracy. Right: Computations
from HF—HL with near degeneracy and HHL-Ch; bullets for the exact nonrelativistic energy at equilibrium and dissociation.
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Figure 4. Binding energy (kcal/mol): values from experiments and fromHHE-i, HF—HL, and HF computations. Left for homopolar molecules.
Right for hydride molecules.

of the atomic spherical symmetry at dissociation into thg 2p 180.0

and 2p in the linear field of the molecule (as discussed in ref . % ]

45 and at the end of the next section). 120.0 | o-<oHF FAN 7
In the left inset of Figure 4, | report the computed binding S :E-::t_i N ]

energies at equilibrium from HF, (HFHL)(ST), (HF—HL-i)- 90.0 ;E o—-o HF*—HL-i ,/ \u 3

(ST), and the laboratory values. In the right inset, | report the -3

corresponding quantities for the diatomic hydride molecules, 60.0 LS

to provide a more general comparison of ab initio HfL Tt

computations. The quality of the three computational levels, HF, F

HF—HL, and HF-HL-i, and the relative improvements are clear 30.0

from the figure. Note, in addition, that in the inset for the b

homopolar | have not included the improvement obtained with oot -
Ep(HF*—HL) and Ep(HF*—HL-i), because these are not com- 6 1+ 2 383 4 5 6 7 8 9 10
puted for the hydrides. | conclude that the computations are Figure 5. Residual binding energy eror (i.e., the molecular extra
rather unreliable, even qualitatively at the HF level, but become ?ggg'on'”m"deb for the HF, HF-HL, HF—HL-i, and HF*—HL-i
qualitatively reliable at the HFHL level, and quantitatively '
realistic at the HFHL-i level. The error in the computed
binding energy, the extra correlation energyodel Of €9 7, is
illustrated in Figure 5 for different models. From the figure, it
is evident that in binding energy calculations, the correlation ~ Once the HF-HL wave function is computed, the largest
energy varies notably from model to model. As expected, the energy correction that remains to be included is,(dyn) (see
residual error (related tawj(dyn) discussed for eq 6) is eq5). Asey(dyn) is a simple and regular function of the atomic
proportional to the number of binding electron pairs; thus it is numberZ, the functional task is not as complex as in DFT
a maximum for N. computations, so it can be represented by the soft Coulomb hole,
As previously stated, the small remaining errorg{HF— Ch, density functional approximatidf#>5358 |n the soft
HL-i) can be accounted for by adding a few well-chosen Coulomb hole approximation, the operatar;is replaced with-
structures to the HFHL-i function to introduce inter-pair (1 — e *?)/rj, whereo is a semiempirical parameter. As shown
correlation energy «§jj(dyn) of eq 6). However, rather than in previous papers, the choice of the Coulomb hole algorithm
follow this ab initio approach, which requires adding more terms is not unique. Therefore, different functionals, such as those in
in the HFHL expansion, | use a semiempirical density ref 83, could have been used after being recalibrated for the
functional to scale the energy to accurate nonrelativistic values. HF—HL model.

5. Computation of the Atomic Dynamical Correlation
Energy
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Figure 6. Coulomb hole computations. HF-Ch, HL-Ch, and (HAL)-Ch potential energy curves for the ground state eflH,, Be,, By, Cy, Ny,
O, and k.

Computed total energies from the HHL function corrected and with a scaling of the total energy using the soft Coulomb
with the Ch functional are collected in Table 4, and the hole algorithm. This confirms the trend | previously reported
corresponding potential energy curves are given in Figure 6. In for single bond molecules.
the figure, | have included the HF-Ch and the HL-Ch potential ~ Note that it is easier to account fQr.,(dyn) than forEc-
energy curves obtained from the HF and HL wave functions, (dyn), becausej(dyn) depends on the chosen computational
and a portion of the HFHL potential curve near equilibrium  model (for the HFHL model, it is smaller than the HF and
is displayed for comparison. There are small deviations from the HL models, but still substantial) and varies from molecule
experiments for fFand Be, but the overall resulting trend is  to molecule at each internuclear distance. On the other hand,
satisfactory, particularly as it is obtained with the ab initiocHF  for a given electronic configuratiors(dyn) is a relatively simple
HL wave function, which yields nearly correct binding energy, and well-behaved functidfof the atomic numbeZ, which is
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TABLE 4: Coulomb Hole Functional Energies: Binding (kcal/mol), E,(HF—HL)Ch, Total (hartree), E;(HF—HL)Ch- R,

E{(HF—HL)Ch- R.,, Errors AE, (kcal/mol) and AE;. (mhartree), and Computed Equilibrium Distance (bohr), Re
molecule Ep(HF—HL)Ch —E(HF—HL)Ch-R. —E(HF—HL)Ch-R, AE, AE., Re
Hz [15 1] 109.48 1.17448 1.00000 0.00 0.00 1.40
He, [12;] 0.02 5.807470 5.807436 0.00 0.00 6.25
Li, [123] 22.95 14.99253 14.95596 —-1.74 —0.02 5111
Be['y,] 2.09 29.33761 29.33427 -0.31 —0.05 4.167
BZ[SZQ] 66.41 49.41007 49.30423 —-2.11 —3.57 3.025
Ca['3] 147.44 75.92379 75.68883 -0.41 -1.17 2.348
N, [125’] 227.83 109.54025 109.17717 —-1.11 —1.43 2.041
0, [329’] 116.91 150.32046 150.13415 —3.72 —0.65 2.191
F, [123] 39.86 199.53180 199.46827 0.86 —0.07 2.603
Ne, [lzg] 0.08 257.875856 257.875723 0.00 —0.88 6.40

nearly constant at different internuclear separations. Furthermore, Concerning the computed binding energies at dissociation, |
the semiempirical parametrization ensures a best fit to the “exactrecall that, due to the molecular symmetry, the 2p electrons are

nonrelativistic energies”, as detailed in previous wir®

In Table 4, | report the computed binding energy at equilib-

rium, Ey(HF—HL)-Ch, the total energy at equilibriungr(HF—
HL)-Ch-R,, and dissociationEr(HF—HL)-Ch-R., the error in

the computed binding energE,, and in the total energy at
dissociation, AEt«, relative to accurate nonrelativistic values

(see Table 1), and the equilibrium distanBe, The data from
the computed binding energy either fragg(HF—HL-i) or from

(HF—HL)-Ch binding energies both for the homopolar mol-

ecules and for the diatomic hydrides.

For the G excited states, (HFHL)-Ch computations yield,
at equilibrium, total energies of75.92009 and—75.89203

hartree, for the3[l, and the 32& states, respectively. The
ground-state total energy is75.92379 hartree (see Table 4 and

0.10 and 0.82 eV, for théll, and 3y ; the corresponding
experimental valug$%® are 0.10 and 0.96 eV. The good

excitation is in line with previous resuffsfor an excited state

in LiH.

add very preliminary computations for Hand Ne; the HF—

and at dissociation are5.723331 and-5.723359 hartree for

He, and—257.094010 and-257.094104 hartree for MeThe

computations with HFHL-Ch (see Table 4) show a minimum,

split into 2p, different from 2p; for the separated atom (in
spherical symmetry), there is no such splitting. This causes some
correlation energy gain (due to the use of different orbitals for
different spins) in the molecule but not in the separated aféms.
This energy gain is not negligible and amounts~®.5 kcal/

mol in F,. The molecular energy at a very large distance
(considered “dissociation distance”) is required to match the
sum of the separated atoms by constraining the basis set
Ep(HF—HL)-Ch show that the computational technique | have coefficients of the 2p orbitals to be degenerate to the.2p
proposed yields reasonable or accurate values. This is high-orbitals?® the imposed constraint notably improves the energy
lighted in Figure 7 where | compare the experimental and the matching of the linear and spherical symmetry computations
(compare the data at dissociation of Table 4 with the equivalent
data in Table 1).

6.

Conclusions

The goal of this work is to compare my model with laboratory
right inset of Figure 3), leading to the excitation energies of data. However, | have included a brief summary of some
recently published computational results to provide a comparison
of the results of my approach with those models.

agreement between computed and experimental electronic Quantum Monte Carlo, QMC, computations are known to
providing reliable energies. However, computatfSnwiith
diffusion QMC for the ground state of 4iBe, By, Cy, N2, Oy,

To complete the tabulation for the homopolar molecules, | and F, performed at the experimental internuclear separation
underestimate the energy by 0.00162, 0.00848, 0.01899, 0.03543,
HL(1,1) total energies at the experimental equilibrium separation 0.0375, 0.0499, and 0.0434 hartree, respectively, as compared
to the exact nonrelativistic energies given in Table 1. Thus, they
are marginally more accurate than my value for (See Table

4) but somewhat worse for the remaining molecules. This is
but at larger internuclear separation then experimentally ob- also true for more recent wotk where the deviations are

served. 0.00062, 0.025, and 0.0223 hartree for, LC,, and N,
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Figure 7. Experimental and (HFHL)-Ch, HFHL, and HF binding energies for homopolar diatomic molecules (left inset) and for diatomic

hydrides (right inset).
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respectively. Hylleraas Cl computatio?¥s° with explicit 1/,
correlation factors, performed for Beand N, report total
energies underestimated by 0.00594 hartree fgraNd by
0.06697 hartree for Bgnote in ref 98 the very accurate com-
puted binding energy for Be2.58 kcal/mol, and a discussion
on the errors of experimental binding energies). Recent full CI
computation¥%191for N, report a total energy 0f109.3753
hartree with a very extended number of SD-R€and a total
energy'°t with frozen core, of~109.278339 hartree, the latter
with a binding energy of 201.55 kcal/mol. Another extended
set of computatiori§? yields the total energies 6f75.81445,
—109.42505;-150.20396, and-199.39929 for G, N, O,, and

F,, to be compared to the data in Table 4. A coupled cluster
computatiof® for F, reports a total energy of199.102796,
and another FCI computation for,Meportd® a total energy

of —109.3754 hartree. A recent publicatiron G, establishes
the computational accuracy limit, particularly for coupled cluster

J. Phys. Chem. A, Vol. 111, No. 51, 200173621

ability have historically provided two distinct quantum chemical
models for theoretical and computational chemistry.

The HF—HL method merges the two historical paths, with a
marginal increase in computational complexity, while retaining
the easy physical interpretability of the two traditional proposals.

| stress that the computations validate the ndtiéhthat the
two traditional methods, HF and HL, are both required to
satisfactorily describe the evolution of the electronic structure
in a chemical bond from molecular dissociation to the united
atom.

The limited number of configurations and structures given
in Table 2, which yield the realistic binding energies reported
in Figures 4 and 7, stand in stark contrast to the typical
expansion length of Cl computations and remind us of the
proposals originated by lvedin?! and continued by his school,
where canonical atomic and molecular orbitals are replaced by
new formulations, including naturé};2*alternan® Daysor627

techniques, and contains extensive tabulation for binding energyorbitals, nonorthogonal Cf’ and geminals?

and other properties.

From this limited summary, one can appreciate the accuracy

achieved by today’s computational chemistry and also realize
that the infant HFHL model is a reasonable alternative.
Admittedly, the use of the semiempirical Coulomb hole
algorithm favors the HFHL computations in the above
comparison.

The computational performance of the HAL method can
be assessed by comparison to the well-known HF and-MC
HF1-2106and VB method$>%5The bottleneck for the HFHL,
VB, and nonorthogonal &1 is the lack of more efficient
algorithms for the orbital optimization.

In general, the HFHL method is computationally competi-
tive with most VB methods, because it requires shorter

expansions and uses essentially equivalent algorithms. However,

it falls behind MC-HF approaches, despite the shorter expan-
sions, because of the orthogonality of the MIBF orbitals. The

importance of short expansions has been stressed in the natural

orbital and in the VB literature, particularly as a way to provide
a chemical interpretation on quantum chemical computations.

Recently, | have includédefficient optimization techniques
and shortened the orbital coefficient list by switching from
Gaussian to Slater-type functioH$tests of these improvements
are in progress on computations of the CO ground $fate.
However, | hope that transfer of HHL bond representations
from small to larger molecules will eventually become a way
to deal with HFHL in large molecular systems. Further
algorithmic improvements in nonorthogonal Cl and VB methods
will also improve the HFHL performance.

In conclusion, | have discussed the application of a new
computational method, the HartreEock—Heitler—London, and
compared HartreeFock, Heitler-London, and HartreeFock—
Heitle—London potential energy curves for the first and second
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